销售咨询热线:
15250669806
技术文章
当前位置:首页 > 技术文章 > 气凝胶的应用与探讨

气凝胶的应用与探讨

更新时间:2021-06-29   |  点击率:2004

气凝胶(aerogels)与干凝胶(xerogels)并非同一概念,国外相关文献指出,湿凝胶经过超临界干燥得到的是气凝胶,经过常压干燥得到的是干凝胶。严格讲,气凝胶应是块状结构,而干凝胶一般是粉体或者颗粒。

气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟”。这种新材料看似脆弱不堪,其实非常坚固耐用,不同成份的气凝胶可以承受不同的温度,常见的氧化硅气凝胶可以在零度到650℃的范围内使用,有些类型的气凝胶高能承受1400℃的高温。气凝胶的这些特性在航天探测上有多种用途。俄罗斯“和平”号空间站和美国“勇气号”火星探测器上,都用到了气凝胶材料。

不同气凝胶的制备方法也不相同。但是其制备历程大同小异,一般是采用溶胶-凝胶法制备湿凝胶(wet gel),湿凝胶经溶剂置换和超临界工作得到相应的气凝胶。

(1)孔隙率很高,可高达99.8%;科学家们表示,因为它有数百万小孔和皱摺,所以如果把1立方厘米的气凝胶拆开,它会填满一个有足球场那么大的地方。它的小孔不仅能像一块海绵一样吸附污染物,还能充当气穴。一些形式的由铂金制成的气凝胶能用于加速水解及氢的产生。这样的话,气凝胶就能用来生产以氢为基础的燃料。

(2)纳米级别孔洞(~20nm)和三维纳米骨架颗粒(2~5nm);

(3) 高比表面积,可高达1000m2/g;

(4) 低密度,可低至0.003g/cm3。

(5)气凝胶*的结构决定了其具有极低的热导率,常温下可以低至0.013W/(m•K),比空气的导热系数还低。

(6)强度低,脆性大,由于其比表面积和孔隙率很大,密度很低,导致其强度很低。如SiO2气凝胶杨氏模量不到10MPa,抗拉强度只有16KPa,断裂韧度只有0.8kPa•m1/2

1.超级绝热材料

材料的热传导由气态传导、固态传导和热辐射传导决定。由于气凝胶材料具有纳米多孔结构,因此常压下气态热导率λg很小,真空下热传导由固态传导和热辐射传导决定。同玻璃态材料相比,纳米多孔材料由于高孔隙限制了稀疏骨架中链的局部激发的传播,使得固态热导率λs仅为非多孔玻璃态材料热导率的1/500左右。Nilsson等检测室温下气凝胶热导率为0.013~0.016W/(m•K),静态空气的热导率为0.024W/(m•K),即使在800℃的高温下其导热系数才为0.043W/(m•K),是目前隔热性能好的固态材料。

(1)太阳能热水器

太阳能热水器及其他集热装置的保温成了能否进一步提高太阳能装置的能源利用率和进一步提高其实用性的关键因素。将纳米孔超级绝热材料应用于热水器的储水箱、管道和集热器,将比现有太阳能热水器的集热效率提高1倍以上,而热损失下降到现有水平的30%以下。

(2)在热电池上应用

可延长热电池的工作寿命,防止生成的热影响热电池周围的元器件。

(3)军事及航天领域

与传统绝热材料相比,纳米孔气凝胶超级绝热材料可以用更轻的质量、更小的体积达到等效的隔热效果。这一特点使其在航空、航天应用领域具有举足轻重的优势。如果用作航空发动机的隔热材料,既起到了隔热作用,又减轻了发动机的重量。作为外太空探险工具和交通工具上的超级绝热材料也有很好的应用前景。

凝胶在航天中的应用远不止这些,美国宇航局的“星尘”号空间探测器已经带着它在太空中完成了一项十分重要的使命———收集彗星微粒。星尘号上的气凝胶方阵科学家认为,彗星微粒中包含着太阳系中原始、古老的物质,研究它可以帮助人类更清楚地了解太阳和行星的历史。2006年,“星尘”号飞船将带着人类获得的批彗星星尘样品返回地球。

但收集彗星星尘并不是件容易的事,它的速度相当快,尽管体积比沙粒还要小,可是当它以如此高速接触其它物质时,自身的物理和化学组成都有可能发生改变,甚至*被蒸发。如今科学家有了气凝胶,这个问题就变得很简单了。它就像一个极其柔软的棒球手套,可以轻轻地消减彗星星尘的速度,使它在滑行一段相当于自身长度200倍的距离后慢慢停下来。在进入“气凝胶手套”后,星尘会留下一段胡萝卜状的轨迹,由于气凝胶几乎是透明的,科学家可以按照轨迹轻松地找到这些微粒。

(4)工业及建筑绝热领域

在工业及民用领域纳米孔超级绝热材料有着广泛的应用价值。首先,在电力、石化、化工、冶金、建材行业以及其他工业领域,热工设备普遍存在。工业节能中,纳米孔超级绝热材料也起着非常重要的作用,其中有些特殊的部位和环境,由于受重量、体积或空间的限制,急需的超级绝热材料。

2.在催化剂以及催化载体方面的应用

气凝胶是一种由超微粒子组成的固体材料,具有小粒径、高比表面积和低密度等特点,使SiO2气凝胶催化剂的活性和选择性远远高于常规催化剂,而且它还可以有效减少副反应的发生。Kister制备出SiO2气凝胶后不久就指出,气凝胶因其高的孔隙率、比表面积和开放的织态结构,在催化剂和催化载体方面具有潜在的应用价值,但因小的热导率和低的渗透性影响了气凝胶在催化反应中的传热和传质,使其应用受到限制。

3.在其它方面的应用

SiO2气凝胶具有*的比表面积和孔隙率,近年来被广泛应用于Cerenkov探测器中,以探测高能带电粒子和在太空中捕集陨石微粒的介质材料。SiO2气凝胶也曾一度被用于等离子体研究中作为惯性限制熔融试验体目标组分。因其具有低的表观密度和热导率,耐高温性能,气凝胶作为隔热消音材料很有前途。

由轻原子量元素组成的低密度、微孔分布均匀的SiO2气凝胶对氖具有良好的吸附性能,因而为惯性约束聚变实验研制高增益靶提供了一个新途径,这对于利用受控热核聚变反应来获得廉价、清洁的能源具有重要意义。

4.气凝胶在日常生活中的应用

气凝胶也正走进我们的日常生活。运动器材公司邓禄普(Dunlop)已经研制出一系列用气凝胶加固的壁球和网球球拍,据说这种球拍能释放更大的力量。今年初,英国诺丁汉66岁的鲍勃•斯托克尔拥有了一套用气凝胶隔热的房子,他也因此成为拥有这种房子的位英国人。他说:“保温效果大大改善了。我把自动调温器调低了5度。这真是一个不可思议的变化。”

登山者也开始从气凝胶中受益。去年,一位英国登山者安妮•帕曼特尔穿上带气凝胶鞋垫的靴子爬上珠穆朗玛峰,就连睡袋也加有这种材料。她说:“我的问题就是我的脚太热,这对一名登山者来说是一个大难题。”

不过,它还没能征服时尚界。Hugo Boss公司推出了一系列用这种材料制成的冬季夹克,但在消费者纷纷抱怨这种衣服太热之后不得不下架。

在环境保护及化学工业方面,纳米结构的气凝胶还可作为新型气体过滤 ,与其它材料不同的是该材料孔洞大小分布均匀,气孔率高,是一种气体过滤材料。由于该材料特别大的比表而积.气凝胶在作为新型催化剂或催化剂的载体方而亦有广阔的应用前景。

5.在电化学方面的应用

在储能器件方而,有机气凝胶经过烧结工艺处理后将得到碳气凝胶 这种导电的多孔材料是继纤维状活性碳以后发展起来的一种新型碳素材料,它具有很大的比表面积(600—1000 m2/g)和高电导率(10~25 s/cm).而目.密度变化范围广(0.05~1.0 g/cm3).如在其微孔洞内充人适当的电解液,可以制成新型可充电电池,它具有储电容量大、内阻小、重量轻、充放电能力强、可多次重复使用等优异特性,初步实验结果表明:碳气凝胶的充电容量达3×104/kg2,功率密度为7 kw/kg,反复充放电性能良好。

6.储氢材料

氢能具有很高的热值,燃烧释能后的产物是水,对环境无污染,此外,氢能为可再生能源,不会枯竭,因而被誉为21世纪的绿色新能源。美国Lawrence Livermore实验室和伊利诺斯大学研究表明:炭气凝胶具有高比表面积、低密度、连续的网络结构且孔洞尺寸很小又与外界相通,具有优良的吸、放氢性能。美国能源部于2005年专门设立了机构,研究掺杂金属的炭气凝胶贮氢,并给予财政资助。

7.气体或者液体吸附

气凝胶还可以用作吸附材料,不如吸附CO2气体,吸附一些化学有毒蒸汽,吸附废水等。